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Abstract
The ground state properties of the S = 1/2 frustrated Heisenberg chain
with period 3 exchange modulation are investigated using the numerical
diagonalization and density matrix renormalization group (DMRG) method.
It is known that this model has a magnetization plateau at one third of
the saturation magnetization Ms. On the other hand, the ground state is
ferrimagnetic even in the absence of frustration if one of the nearest neighbour
bond is ferromagnetic and the others are antiferromagnetic. In the present
work, we show that this ferrimagnetic state continues to the region in which
all bonds are antiferromagnetic if the frustration is strong. This state further
continues to the above-mentioned 1/3 plateau state. In between, we also find
the noncollinear ferrimagnetic phase in which the spontaneous magnetization is
finite but less than Ms/3. The intuitive interpretation for the phase diagram is
given and the physical properties of these phases are discussed.

1. Introduction

Frustrated quantum spin chains have been the subject of extensive studies for decades. One
of the most remarkable phenomena driven by frustration is the transition to a spontaneously
dimerized ground state as demonstrated by the exact solution of Majumdar and Ghosh [1]. In
the magnetic field, another type of translational symmetry breakdown has recently been found
by Okunishi and Tonegawa [2, 3] and Tonegawa et al [4] resulting in a nontrivial magnetization
plateau at one third of the saturation magnetization Ms. The present author and Affleck [5] have
investigated the effect of period 3 exchange modulation on this plateau state. It turned out that
the transition between the classical plateau state and the quantum plateau state takes place
within the 1/3 plateau state.

Another remarkable effect of frustration is the stabilization of the ferrimagnetic ground
state. Yoshikawa and Miyshita [6] proposed a model of a frustrated quantum chain which shows
a ferrimagnetic ground state. Remarkably, this model not only has a Lieb–Mattis type ground
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state in which magnetization is fixed to a value determined by the difference of number of sites
of two sublattices but also has a noncollinear ferrimagnetic ground state where magnetization
is not a simple fraction of full magnetization. In this state, the local magnetization profile has
an incommensurate structure.

In the present paper, we show that the S = 1/2 frustrated Heisenberg chain with period 3
exchange modulation also shows Lieb–Mattis type and noncollinear type ferrimagnetism in an
appropriate parameter range. The former continues to the 1/3 plateau state investigated in [5].

This paper is organized as follows. In section 2, we present the model Hamiltonian. The
ground state phase diagram obtained by numerical diagonalization is presented in section 3.
The property of each phase is also discussed based on the density matrix renormalization group
(DMRG) calculation. In the section 4 we summarize our results.

2. Hamiltonian

The Hamiltonian of the S = 1/2 frustrated Heisenberg chain with period 3 exchange
modulation is given by

H = J
N/3∑

l=1

[(1 − α) (S3l−1S3l + S3lS3l+1) + (1 + α)S3l+1S3l+2] + Jδ

N∑

i=1

SiSi+2 (1)

where Si is the spin 1/2 operator and N is the number of sites. This model has a magnetization
plateau at one third of the saturation magnetization Ms as investigated in [5]. On the other
hand, it is obvious that the ground state is ferrimagnetic for α < −1 even in the absence of
frustration. In this paper, we concentrate on the ground state properties of this model in the
region −1 < α < 0 and δ > 0.

3. Ground state properties

The ground state phase diagram is obtained for α � 0 and 0 � δ � 0.8 as shown in figure 1 by
the numerical diagonalization of a finite size system with N = 12, 18 and 24. For δ > 0.8, the
strong finite size effect prevents the precise determination of phase boundary.

For small |α|, the ground state is the gapless Tomonaga–Luttinger liquid for small δ and
the Majumdar–Ghosh type spontaneously dimerized phase for larger δ. The transition between
these two phases is the Brezinskii–Kosterilitz–Thouless type transition and the phase boundary
can be determined by the level spectroscopic method [7] using the numerical diagonalization
data for N = 12, 18 and 24.

Typical magnetization curves calculated by the DMRG method in these two nonmagnetic
phases are shown in figure 2(a) for (α, δ) = (−0.2, 0.2) and (b) for (α, δ) = (−0.8, 0.8) and
N = 96 with the open boundary condition. It is evident that the spin gap is absent in the former
case while it is present in the latter case. The magnetization plateau at M = Ms/3 is always
present, reflecting the period 3 exchange modulation.

For large negative α and large δ, the ground state is ferrimagnetic with magnetization M =
Ms/3. Even though the present model is not strictly bipartite due to next nearest neighbour
exchange interaction, this phase can be regarded as the Lieb–Mattis type ferrimagnetic phase
because it is directly connected to the Lieb–Mattis ferrimagnetic state with M = Ms/3 at
α < −1 and δ = 0. For small δ and α � −1, the three spins connected by the (1 − α)-bonds
form an effective spin 1/2 doublet.

|⇑〉 = 1√
6

(|↑↑↓〉 − 2 |↑↓↑〉 + |↓↑↑〉) (2)
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Figure 1. Ground state phase diagram for −1 � α � 0 for 0 � δ � 0.8. TL, MG, NC and LM
stand for Tomonaga–Luttinger liquid phase, Majumdar–Ghosh type dimer phase, noncollinear and
Lieb–Mattis ferrimagnetic phases, respectively.
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Figure 2. Magnetization curve in (a) Tomonaga–Luttinger liquid phase with (δ, α) = (0.2,−0.2)

and (b) Majumdar–Ghosh type dimer phase with (δ, α) = (0.8,−0.2) for N = 96 calculated by
the DMRG method.

|⇓〉 = 1√
6

(|↓↓↑〉 − 2 |↓↑↓〉 + |↑↓↓〉) . (3)

By elementary manipulation, the effective exchange interaction between these effective spins
turns out to be 2J (1 + α − δ)/9. Therefore the ground state in this region is a Lieb–Mattis
type ferrimagnetic state for 1 + α < δ and the Tomonaga–Luttinger liquid state otherwise.
A typical magnetization curve calculated by the DMRG method in this phase is shown in
figure 3(a) for (α, δ) = (−0.8, 0.8) and N = 96 with open boundary conditions. Comparing
this magnetization curve with figure 2, it is clear that this ferrimagnetic state continues to
the classical plateau state in the nonmagnetic phases. It should be noted that the quantum
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Figure 3. Magnetization curves in (a) the Lieb–Mattis type ferrimagnetic phase with (δ, α) =
(0.8,−0.8) and (b) the noncollinear ferrimagnetic phase with (δ, α) = (0.8,−0.39) for N = 96
calculated by the DMRG method.
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Figure 4. Local magnetization profile (a) in the Lieb–Mattis type ferrimagnetic phase with δ = 0.7
and α = −0.7 and (b) in the noncollinear ferrimagnetic phase with δ = 0.8 and α = −0.39 for
N = 96 calculated by the DMRG method. In order to exclude the boundary effects, only the sites
in the middle of the system 19 � i � 78 are shown. The lines are guides for the eye drawn to make
clear the incommensurate modulation of the magnetization profile.

plateau state is realized only for α > 0 [5]. The local magnetization profile
〈
Sz

i

〉
calculated

by the DMRG method clearly shows a three-sublattice structure as shown in figure 4(a) for
(α, δ) = (−0.7, 0.7) and N = 96 with open boundary conditions. It should also be noted that
spins are not fully polarized even in the Lieb–Mattis type phase although the total magnetization
is exactly quantized to Ms/3.

With the decrease in |α|, the ferrimagnetic state with magnetization less than Ms/3 appears
for α � 0.72. This phase has similarity with the noncollinear ferrimagnetism studied by
Yoshikawa and Miyashita [6]. As a representative, the magnetization curve in this state
calculated by the DMRG method is presented in figure 3(b) for (α, δ) = (−0.39, 0.8) and
N = 96 with open boundary conditions. It is clear that the magnetization starts from a nonzero
value less than Ms/3 at H = 0. The magnetization profile in this state calculated by the DMRG
method is shown in figure 4(b) for the same set of parameters. As in the case of Yoshikawa and
Miyashita [6], the magnetization profile has incommensurate modulation.
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Figure 5. Classical noncollinear spin configuration.

The presence of the noncollinear ferrimagnetic state can be also understood within the
classical picture. If we assume the noncollinear spin configuration depicted in figure 5 and
minimize the classical energy calculated using the Hamiltonian (1) with respect to the angle
θ , we find the nonzero solution of θ for δ > −1 − 3α corresponding to the noncollinear
ferrimagnetic phase. For δ < −1 − 3α, we find θ = 0 corresponding to the Lieb–Mattis type
ferrimagnetism. However, the observed incommensurate ferrimagnetic spin profile cannot be
understood within this classical picture. We expect that this phenomenon is essentially due to
the combined effect of quantum fluctuation and frustration.

Finally, in the narrow region between the ferrimagnetic phase and the spontaneously
dimerized phase, another Tomonaga–Luttinger liquid phase is found. Considering the
difference in the spin structures of the spontaneously dimerized phase and the noncollinear
ferrimagnetic phase, it is reasonable to expect an intermediate critical phase between these two
phases. However, it still possible that this phase does not survive in the thermodynamic limit
because of the limitation of the system size and ambiguity in the extrapolation procedure.

4. Summary

The phase diagram of the S = 1/2 frustrated Heisenberg chains with period 3 exchange
modulation is determined by analysing the exact numerical diagonalization data. In addition
to the Tomonaga–Luttinger liquid phase, a dimer phase, a Lieb–Mattis type ferrimagnetic
phase and a noncollinear ferrimagnetic phase are found. A physical interpretation of the
phase diagram based on the perturbational argument and classical picture is given. A typical
magnetization curve in each phase is presented. It is shown that the magnetization profile
has incommensurate modulation in the noncollinear ferrimagnetic phase. This feature has a
similarity to the model investigated by Yoshikawa and Miyashita [6] which also has frustration
and noncollinear ferrimagnetism. Therefore we may regard the incommensurate spin profile as
a characteristic of the noncollinear quantum ferrimagnetism induced by frustration.

Another Tomonaga–Luttinger liquid phase is found in the narrow region between the dimer
phase and the noncollinear ferrimagnetic phase. Further investigation of the nature of this phase
is left for future studies.
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